Threshold Value Estimation Using Adaptive Two-Stage Plans inR
نویسندگان
چکیده
منابع مشابه
Two-stage estimation using copula function
Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two- stage estimation divides this problem to several simple optimizations. It saves significant amount of computational time. Two methods are investigated for estimation consistency check. We revisit Sankaran and Nair's bivari...
متن کاملTwo-stage threshold representations
We study two-stage choice procedures in which the decision maker first preselects the alternatives whose values according to a criterion pass a menu-dependent threshold and then maximizes a second criterion to narrow the selection further. This framework overlaps with several existing models that have various interpretations and impose various additional restrictions on behavior. We show that t...
متن کاملAdaptive Threshold Sampling and Estimation
Sampling is a fundamental problem in both computer science and statistics. A number of issues arise when designing a method based on sampling. These include statistical considerations such as constructing a good sampling design and ensuring there are good, tractable estimators for the quantities of interest as well as computational considerations such as designing fast algorithms for streaming ...
متن کاملTwo-stage network DEA-R based on value efficiency
It is essential for most organizations and financial institutes to be able to evaluate their decision-making units (DMUs), when there is only a ratio of inputs to outputs (or vice versa) available. In this paper, we will propose our two-stage DEA-R models, which are a combination of data envelopment analysis and ratio data, based on value efficiency. Integrating value efficiency into data envel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2015
ISSN: 1548-7660
DOI: 10.18637/jss.v067.i03